6 research outputs found

    Cost and performance modeling for Earth system data management and beyond

    Get PDF
    Current and anticipated storage environments confront domain scientist and data center operators with usability, performance and cost challenges. The amount of data upcoming system will be required to handle is expected to grow exponentially, mainly due to increasing resolution and affordable compute power. Unfortunately, the relationship between cost and performance is not always well understood requiring considerable effort for educated procurement. Within the Centre of Excellence in Simulation of Weather and Climate in Europe (ESiWACE) models to better understand cost and performance of current and future systems are being explored. This paper presents models and methodology focusing on, but not limited to, data centers used in the context of climate and numerical weather prediction. The paper concludes with a case study of alternative deployment strategies and outlines the challenges anticipating their impact on cost and performance. By publishing these early results, we would like to make the case to work towards standard models and methodologies collaboratively as a community to create sufficient incentives for vendors to provide specifications in formats which are compatible to these modeling tools. In addition to that, we see application for such formalized models and information in I/O re lated middleware, which are expected to make automated but reasonable decisions in increasingly heterogeneous data centers

    Toward understanding I/O behavior in HPC workflows

    Get PDF
    Scientific discovery increasingly depends on complex workflows consisting of multiple phases and sometimes millions of parallelizable tasks or pipelines. These workflows access storage resources for a variety of purposes, including preprocessing, simulation output, and postprocessing steps. Unfortunately, most workflow models focus on the scheduling and allocation of com- putational resources for tasks while the impact on storage systems remains a secondary objective and an open research question. I/O performance is not usually accounted for in workflow telemetry reported to users. In this paper, we present an approach to augment the I/O efficiency of the individual tasks of workflows by combining workflow description frameworks with system I/O telemetry data. A conceptual architecture and a prototype implementation for HPC data center deployments are introduced. We also identify and discuss challenges that will need to be addressed by workflow management and monitoring systems for HPC in the future. We demonstrate how real-world applications and workflows could benefit from the approach, and we show how the approach helps communicate performance-tuning guidance to users

    Survey of storage systems for high-performance computing

    Get PDF
    In current supercomputers, storage is typically provided by parallel distributed file systems for hot data and tape archives for cold data. These file systems are often compatible with local file systems due to their use of the POSIX interface and semantics, which eases development and debugging because applications can easily run both on workstations and supercomputers. There is a wide variety of file systems to choose from, each tuned for different use cases and implementing different optimizations. However, the overall application performance is often held back by I/O bottlenecks due to insufficient performance of file systems or I/O libraries for highly parallel workloads. Performance problems are dealt with using novel storage hardware technologies as well as alternative I/O semantics and interfaces. These approaches have to be integrated into the storage stack seamlessly to make them convenient to use. Upcoming storage systems abandon the traditional POSIX interface and semantics in favor of alternative concepts such as object and key-value storage; moreover, they heavily rely on technologies such as NVM and burst buffers to improve performance. Additional tiers of storage hardware will increase the importance of hierarchical storage management. Many of these changes will be disruptive and require application developers to rethink their approaches to data management and I/O. A thorough understanding of today's storage infrastructures, including their strengths and weaknesses, is crucially important for designing and implementing scalable storage systems suitable for demands of exascale computing

    The SIOX architecture – coupling automatic monitoring and optimization of parallel I/O

    Get PDF
    Performance analysis and optimization of high-performance I/O systems is a daunting task. Mainly, this is due to the overwhelmingly complex interplay of the involved hardware and software layers. The Scalable I/O for Extreme Performance (SIOX) project provides a versatile environment for monitoring I/O activities and learning from this information. The goal of SIOX is to automatically suggest and apply performance optimizations, and to assist in locating and diagnosing performance problems. In this paper, we present the current status of SIOX. Our modular architecture covers instrumentation of POSIX, MPI and other high-level I/O libraries; the monitoring data is recorded asynchronously into a global database, and recorded traces can be visualized. Furthermore, we offer a set of primitive plug-ins with additional features to demonstrate the flexibility of our architecture: A surveyor plug-in to keep track of the observed spatial access patterns; an fadvise plug-in for injecting hints to achieve read-ahead for strided access patterns; and an optimizer plug-in which monitors the performance achieved with different MPI-IO hints, automatically supplying the best known hint-set when no hints were explicitly set. The presentation of the technical status is accompanied by a demonstration of some of these features on our 20 node cluster. In additional experiments, we analyze the overhead for concurrent access, for MPI-IO’s 4-levels of access, and for an instrumented climate application. While our prototype is not yet full-featured, it demonstrates the potential and feasibility of our approach

    State of the Art and Future Trends in Data Reduction for High-Performance Computing

    No full text
    Research into data reduction techniques has gained popularity in recent years as storage capacity and performance become a growing concern. This survey paper provides an overview of leveraging points found in high-performance computing (HPC) systems and suitable mechanisms to reduce data volumes. We present the underlying theories and their application throughout the HPC stack and also discuss related hardware acceleration and reduction approaches. After introducing relevant use-cases, an overview of modern lossless and lossy compression algorithms and their respective usage at the application and file system layer is given. In anticipation of their increasing relevance for adaptive and in situ approaches, dimensionality reduction techniques are summarized with a focus on non-linear feature extraction. Adaptive approaches and in situ compression algorithms and frameworks follow. The key stages and new opportunities to deduplication are covered next. An unconventional but promising method is recomputation, which is proposed at last. We conclude the survey with an outlook on future developments
    corecore